CORIOLIS AND CENTRIFUGAL FORCES

The equation describing the effective force on a particle on the surface of the Earth while acted upon by external forces \vec{S}, is

$$
\vec{F}_{\text {effective }}=\vec{S}+m \vec{g}_{0}-m \vec{\omega}_{\oplus} \times\left[\vec{\omega}_{\oplus} \times(\vec{R}+\vec{r})\right]-2 m\left(\vec{\omega}_{\oplus} \times \vec{v}_{r}\right)
$$

where $R=$ the vector from the center of the Earth to the location, $\omega \oplus$ is the angular velocity of the Earth, and v_{r} is the velocity of the particle as seen from the surface of the Earth.

Earth coordinate system

The standard coordinate system used on the surface of Earth has z upwards along the radial vector from Earth's Center, x to the south, and y to the east as shown below.
Earth Radius by Latitude Calculator

Formula for the calculation

latitude B, radius R, radius at equator r_{1}, radius at pole r_{2}
$R=\sqrt{\left[\left(r_{1}{ }^{*} \cos (B)\right)^{2}+\left(r_{2}{ }^{2 *} \sin (B)\right)^{2}\right] /\left[\left(r_{1}{ }^{*} \cos (B)\right)^{2}+\left(r_{2}{ }^{*} \sin (B)\right)^{2}\right]}$
Height above sea level can be negative, then you are below sea level.
https://rechneronline.de/earth-radius/

Since Earth is not spherical, the radius changes with latitude according to ${ }^{1}$

$$
R_{\lambda}=\sqrt{\frac{\left(R_{\text {Equator }}^{2} \cos \lambda\right)^{2}+\left(R_{\text {Pole }}^{2} \sin \lambda\right)^{2}}{\left(R_{\text {Equator }} \cos \lambda\right)^{2}+\left(R_{\text {Pole }} \sin \lambda\right)^{2}}}
$$

At Canton's latitude of $44.6^{\circ} \mathrm{N}$, using $R_{\text {Equator }}=6378.137 \mathrm{~km}$ and $R_{\text {Pole }}=6356.752 \mathrm{~km}$ gives $R_{\text {Canton }}=6367.639$. Since Canton's elevation is 115 m , the radius from Earth's center to the ground in Canton is

$$
R_{\text {canton }}=6367.754 \mathrm{~km} .
$$

[^0]
The Coriolis Force

This force acts to deflect objects that are moving at a velocity of v_{r} with respect to the surface of the Earth:

$$
\vec{F}_{\text {Coriolis }}=-2 m\left(\vec{\omega}_{\oplus} \times \vec{v}_{r}\right)
$$

In the Northern hemisphere, this deflects objects to their own right, in the southern hemisphere, it deflects them to their left. This can only be calculated for a specific velocity. However, we can get a general equation for the Coriolis force acting on a falling object by assuming that $\vec{v}_{\mathrm{r}}=\mathrm{v}_{\text {fall }} \hat{z}=-g t \hat{z}$.

$$
\left[\vec{\omega}_{\oplus} \times v_{\text {fall }} \hat{z}\right]=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
-\omega_{\oplus} \cos \lambda & 0 & \omega_{\oplus} \sin \lambda \\
0 & 0 & -g \dagger
\end{array}\right|=-\left(\omega_{\oplus} g t \cos \lambda\right) \hat{y}
$$

Since it's an acceleration in y, this is a differential equation that can be solved for the deflection distance, y.

$$
\begin{gathered}
\ddot{y}=\frac{d^{2} y}{d y^{2}}=2 \omega_{\oplus} g t \cos \lambda \\
y(t)=\frac{1}{3} \omega_{\oplus} g t^{3} \cos \lambda
\end{gathered}
$$

If it falls from a height, h, substituting $\dagger=\sqrt{ }(2 h / g)$

$$
y(h)=\frac{1}{3} \sqrt{\frac{8 h^{3}}{g}} \omega_{\oplus} \cos \lambda
$$

For Canton, using $\mathrm{h}=100 \mathrm{~m}$, gCanton (see the Centrifugal section) $=9.789577 \mathrm{~m} / \mathrm{s}$

The Centrifugal Force

For Canton, $\lambda=44.6^{\circ} \mathrm{N}, \mathrm{R}_{\text {Canton }}=\mathrm{R}_{\odot}$, Canton +115 m (elevation) $=6367.754 \mathrm{~km}$

$$
\left.\begin{array}{l}
\vec{F}_{c f}=-m \vec{\omega} \times\left[\vec{\omega} \times \vec{R}_{\text {canton }}\right.
\end{array}\right] \quad \begin{gathered}
\hat{x} \\
\left.\vec{\omega} \times \vec{R}_{\text {canton }}\right]=\left|\begin{array}{ccc}
\hat{y} & \hat{z} \\
-\omega \cos \lambda & 0 & \omega \sin \lambda \\
0 & 0 & R_{\text {canton }}
\end{array}\right| \\
{\left[\vec{\omega} \times \vec{R}_{\text {canton }}\right]=-\left[(-\omega \cos \lambda) R_{\text {Canton }}\right] \hat{y}}
\end{gathered}
$$

$$
\vec{\omega} \times\left[\vec{\omega} \times \vec{R}_{\text {canton }}\right]=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
-\omega \cos \lambda & 0 & \omega \sin \lambda \\
0 & R_{\text {canton }} \omega \cos \lambda & 0
\end{array}\right|
$$

$\vec{\omega} \times\left[\vec{\omega} \times \vec{R}_{\text {Canton }}\right]=(\omega \sin \lambda)\left(R_{\text {Canton }} \omega \cos \lambda\right) \hat{x}+(\omega \cos \lambda)\left(R_{\text {Canton }} \omega \cos \lambda\right) \hat{z}$
$\vec{\omega} \times\left[\vec{\omega} \times \vec{R}_{\text {Canton }}\right]=R_{\text {Canton }} \omega^{2} \cos \lambda[\underbrace{\sin \lambda) \hat{x}}_{\text {deflection }}+\underbrace{\cos \lambda) \hat{z}}_{\text {reduction }}]$

The reduction of g in Canton is

$$
\begin{aligned}
\left|a_{c f} \hat{z}\right| & =\frac{\left|\vec{F}_{c f, z}\right|}{m}=\left(R_{c a n t o n} \omega^{2} \cos ^{2} \lambda\right) \\
& =\left(6367.8 \times 10^{3}\right)\left(7.27 \times 10^{-5}\right)^{2}\left(\cos ^{2}(44.6)\right)=0.0171 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

So that's a 0.174% reduction from go. A small effect!
The deflection of g in Canton is

$$
\begin{aligned}
\left|a_{c f} \hat{x}\right| & =\frac{\left|\vec{F}_{c f, x}\right|}{m}=\left(R_{c a n t o n} \omega^{2} \cos \lambda \sin \lambda\right) \\
& =\left(6367.8 \times 10^{3}\right)\left(7.27 \times 10^{-5}\right)^{2}(\cos (44.6) \cos (44.6))=0.0168 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Find the angle away from the radial vector ... angle of the pole-ward lean ... of "vertical". Use only the acceleration of gravity ... just divide by m.

The magnitude of the centrifugal acceleration in Canton is

$$
\begin{aligned}
\left|a_{c f}\right| & =\frac{\left|\vec{F}_{c f}\right|}{m}=\sqrt{\left|a_{c f, x}\right|^{2}+\left|a_{c f, z}\right|^{2}} \\
& =\sqrt{\left(0.0168 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}+\left(0.0171 \mathrm{~m} / \mathrm{s}^{2}\right)^{2}} \\
& =0.02398 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Apply the law of cosines to find α :

$$
a_{c f}=g_{0}^{2}+g_{\text {Canton }}^{2}-2 g_{0} g_{\text {canton }} \cos \alpha
$$

Giving the deflection angle of gcanton from go as

$$
\cos \alpha=\frac{g_{0}^{2}+g_{\text {Canton }}^{2}-a_{c f}}{2 g_{0} g_{\text {canton }}}
$$

Using the standard value of gravity and the
 Canton values from the previous page

$$
\begin{aligned}
& g_{0}=9.80665 \mathrm{~m} / \mathrm{s}^{2} \\
& g_{\text {Canton }}=9.80665-0.0171=9.78955 \mathrm{~m} / \mathrm{s}^{2} \\
& a_{\text {cf }}=0.02398 \mathrm{~m} / \mathrm{s}^{2} \\
& \cos \alpha_{\text {Canton }}=\frac{(9.80665)^{2}+(9.78955)^{2}-(0.02398)^{2}}{2(9.80665)(9.78955)} \\
& \alpha_{\text {Canton }}=\cos ^{-1}(0.9999985)=0.0983^{\circ}
\end{aligned}
$$

So everything in Canton, plumb bobs, buildings, people, lean almost a tenth of a degree to the north in response to the centrifugal force. Cool!

[^0]: ${ }^{1}$ https://rechneronline.de/earth-radius/

